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Abstract

We propose ROTAR, a row-based table representation learning method, to ad-1

dress the efficiency and scalability issues faced by existing table representation2

learning methods. The key idea of ROTAR is to generate query-agnostic row3

representations that could be re-used via query-specific aggregation. In addition to4

the row-based architecture, we introduce several techniques: cell-aware position5

embedding, teacher-student training paradigm, and selective backward to improve6

the performance of ROTAR model.7

1 Introduction8

Tabular data is one of the most widely used media for storing information. Table representation9

learning has a wide range of downstream applications such as table question answering, table search,10

table type detection, etc. It is thus vital to design an effective and practical solution for table11

representation learning. However, despite its popularity and importance in modern data science, table12

representation learning is not well addressed, compared to images, texts, or other media.13

Most of the previous attempts [20, 11, 8, 7, 14, 19, 1] apply recent progress in natural language14

processing (NLP), i.e., transformers and large language models (LMs). These works directly serialize15

the entire table together with a query or related utterance into a sequence as the input to an LM, which16

is pretrained on a sufficient amount of table corpus. However, as the most common and best practices17

for table representation learning, this approach suffers from scalability and efficiency issues.18

First, serializing a large table containing a large number of rows will result in a long sequence which19

is hard to process by classical transformer-based models, because the complexity of such models20

is quadratic to the length of the input sequence. To solve this problem, some works optimize the21

transformer structure [15], while others use table specific solutions to reduce the complexity of22

attention computation, such as restricting attention computation to the same row or column [6, 9] or23

only between the schema and values [4]. However, these approaches do not eliminate the scalability24

issue, because a pretrained LM is subject to a max sequence length constraint. For example, GPT-325

limits the input length to 2048 tokens, while BERT sets this limit as 512. A table with a small number26

of rows can easily exceeds it, causing inevitable truncation and thus loss of information.27

Second, the serialization process takes the given query as input, leading to query-specific encoding.28

Because in real-world scenarios many queries concentrate on a few tables, repeatedly computing the29

table representation for every new incoming query is inefficient.30

To address the above problems, we proposed ROTAR which learns a query-agnostic row-based table31

representation. Rather than serialize the whole table, ROTAR takes each row as input and efficiently32

produces row level encodings which can be re-used by any queries. It then uses query-specific33

aggregation to produce the table representation on top of these row encodings.34
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Figure 1: ROTAR model architecture.

2 ROTAR Methodology35

2.1 Overall Architecture36

Row Independence Observation. Independencies in the table structure are the key to reduce37

the computational complexity of transformer-based models: irrelevant attention can be saved in38

transformer-based models without harming their performance. We observe that although the informa-39

tion in different rows should be aggregated to form the representation of the whole table, there is no40

strong correlation among different rows.41

Intuitively, a relational table can be viewed as a set of rows with homogeneous schema, because the42

order of the rows usually does not matter. The representation of a set is mathematically equivalent to43

an appropriate aggregation of the representations of each single item in the set [16, 21]. Therefore,44

table representation can be factorized into an aggregation of independent row representations.45

Inspired by this observation, ROTAR uses a weight-shared row-based transformer model to encode46

each row in the table independently and ignores the inter-row correlation in this encoding (Fig. 1).47

ROTAR consists of two components: query-agnostic row encoder M and query-specific aggregation.48

After training on a dataset, the learned row representations by the row encoder can be preprocessed49

and stored. Therefore, answering an upcoming query only requires computing the aggregation. It50

does not have to repeatedly run the row encoder, thus saving a massive amount of time.51

Row Encoder. More specifically, ROTAR considers every cell Ti,j in a table T as a textual cell, i.e.,52

Ti,j = Ti,j;1Ti,j;2 · · ·Ti,j;n where each Ti,j;k is a token. Similarly, each attribute in the schema A53

is also viewed as textual, i.e., Aj = Aj;1Aj;2 · · ·Aj;m, where each Aj;k is a token. ROTAR thus54

serializes each cell ci,j by combining the attribute and the cell value ci,j = [COL]Aj[VAL]Ti,j .55

Given a table with N rows and L columns, a shared encoder M encodes each concatenated row56

ci = ci,1||ci,2|| · · · ||ci,L into a fixed-dimension vector vi = M(ci). Notice that the obtained set57

of row representations {v1, v2, · · · , vN} is query-agnostic.58

Aggregation. Then for each incoming query q, the resulted table representation can be computed by59

vqT = ρ
(
{ϕ(ci, q)}Ni=1

)
, where ϕ is a learnable function that given a query q, extracts information60

from ci. ρ is an appropriate aggregation function [16, 21]. The function ϕ and ρ together constitute61

a query-specific aggregation module. For instance, if a query q is encoded as a vector vq of the62

same dimension with the row representations, setting ϕ(ci, q) = vi ⊙ vq (⊙ stands for point-wise63

multiplication) and ρ(X) = 1
|X|

∑
x∈X x yields the table representation as the average row vector64

projected onto the query vector vq .65

2.2 Query-agnostic Row Encoder66

The ROTAR model tackles the first fore-mentioned issue in scalability, i.e., encoding a table with67

a large number of rows. Because the transformer model is run separately for each row and the68

aggregation module does not have to use transformer-based models, ROTAR is capable of handling69
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Figure 2: (a). Cell-aware position embedding. (b). Teacher-student paradigm.

any tables with any number of rows. Note the number of columns is not of concern, because the70

number of columns is usually much smaller than the number of rows.71

The design of the query-agnostic row encoder M can be very flexible. For example, we can72

directly use a general-purpose pretrained LM like BERT [5] or RoBERTa [12], or pre-existing table73

representation models like TAPAS [8, 7] if we view each row as a table consisting of a single row. In74

addition to directly adopt the existing methods, we also propose two new techniques customized to75

row-based table representation learning.76

When using a general-purpose pretrained LM as the row encoder M , instead of directly feeding the77

serialized row ci = ci,1||ci,2|| · · · ||ci,L into the LM, we could take advantage of the structure of78

row to elaborate the position embedding design. Specifically, the position embedding pTi,j;k of each79

token Ti,j;k or pAj;k of each token Aj;k can be decomposed into inter-cell position embeddings (based80

on j or Aj) and intra-cell position embeddings (based on k) [3], which can then be customized for81

different purpose of use (Fig. 2a). For example, in many circumstances the order of attributes should82

be irrelevant to the representation of the row. By simply removing the absolute position embedding83

and the cell index embedding, the order of attributes is not perceived by the LM and thus the learned84

representation is robust against swapping order of columns.85

2.3 Query-specific Aggregation86

The ROTAR model also tackles the fore-mentioned issue in efficiency, i.e., learning representation87

re-usable for different queries. While the learned row-based representation is query-agnostic, a88

query-specific aggregation module is introduced to produce query-specific table representation.89

The design of query-specific adaption function ϕ can be very straightforward, for example, ϕ(vi, q) =90

vi ⊙ vq, or ϕ(vi, q) = MLP(vi ⊕ vq) (⊕ stands for concatenation) or even ϕ(vi, q) = MLP(vi ⊕91

vq ⊕ |vi − vq| ⊕ (vi ⊙ vq)). Furthermore, notice that ϕ does not have to be differentiable or even92

numeric, traditional selective ϕ based on the textual input ci could also be used. For example, the93

n-gram similarity weighted embedding ϕ(ci, q) = ns(ci, q) · vi = 2·|n-gram(ci)∩n-gram(q)|
|n-gram(ci)|+|n-gram(q)| · vi, or a94

hard threshold ϕα(ci, q) = [ns(ci, q) > α] · vi.95

The choice of aggregation function ρ can be rather arbitrary, for example, Mean, Min, Max,96

LogSumExp, etc., are all feasible aggregation functions. However, the choice of aggregation naturally97

influences the table representation quality when handling different queries. Therefore, a learnable98

aggregation function ρ could make the model more flexible. For instance, we could learn a multi-99

head projection aggregation function, which has a set of learnable parameters Θ = {θl}dl=1, and100

ρΘ(X) = 1
|X|

∑
x∈X Nonlinear(x⊙ θl).101

2.4 Training Techniques102

2.4.1 Teacher-Student Paradigm103

ROTAR simplifies the table representation process by ignoring inter-row interactions. Therefore,104

it pursues efficiency and scalability at the expense of inevitable but acceptable performance decay.105

However, with the help of the previous table representation methods during training time, the ROTAR106

model is able to improve its performance while still being efficient during inference time.107
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Table 1: Experiment result.
Method Test Acc. (%) Inference Speed

TAPASBASE
† 78.5%± 0.3% –

TAPASBASE (TabFact only) 69.9%± 3.8% –
Table-BERT 65.1% –

TAPASBASE (no query) 50.3% 55ms/table
ROTAR 63.6% 15ms/table

Consider the teacher-student paradigm which is widely used in model distillation [10, 13, 17].108

Training the student model to mimic the features generated by the highly performant teacher model109

can provide more differentiable information and boost the student model’s learning process. The110

small and efficient student model is then used as a cost effective alternative to the original teacher111

model.112

Technically, instead of only considering the loss function L = Ltask(MS) of the downstream113

task during training, where MS is the student model, the loss in teacher-student paradigm uses114

L = α · Ltask(MT ) + β · Ltask(MS) + γ · d(MT ,MS), where MT is the teacher model, d is the115

mean squared error distance between features or logits generated by the teacher and student model,116

and α, β, γ are tunable hyperparameters (Fig. 2b).117

2.4.2 Selective Backward118

In practice, back-propagation through the aggregation of multiple rows could be unacceptable because119

of the GPU memory limit. However, since the row encoder M is shared, ROTAR is able to only120

sample some rows to back-propagate. The sampling process could be done either randomly or121

weighted according to a traditional selective ϕ, like n-gram similarity.122

3 Experiments123

We conduct preliminary experiments with the table fact verification task on the TabFact [2] dataset.124

In the table verification task, a query q is a statement to be evaluated based on a table T . The TabFact125

dataset consists of 16K tables obtained from Wikipedia and 118K labeled statements. A common126

public data split is provided along with the dataset. The results are shown in Tab. 1.127

For fair comparison, we use the same model size to bert-base and google/tapas-base. Further,128

because the TAPASBASE best result† (78.5% ± 0.3%) is pretrained on 6.2M table-text examples129

obtained from Wikipedia, we compare against the results reported by TAPAS using only TabFact130

data (69.9%± 3.8%) and Table-BERT (65.1%). 1131

Note since the ROTAR model prioritizes efficiency and scalability over performance, it slightly132

sacrifices performance in exchange for big speed up. The performance sacrifice mainly comes from133

the query-agnostic property instead of the row-independency In particular, with a an accuracy drop of134

∼ 6%, the ROTAR model with preprocessed feature vector is ∼ 3.7x faster than the TAPAS model,135

depending on the speed of the query encoder.136

Further, we also compare against a TAPAS model that same to ROTAR, is not aware of the queries137

beforehand. We then finetuned it under the same setting to ROTAR. This TAPAS model achieves an138

accuracy of 50.3%, which is much lower than the accuracy of our ROTAR (63.6%). This confirms139

that ROTAR is indeed able to produce query-agnostic representation.140

4 Conclusion141

We propose ROTAR which uses a shared row-encoder to generate query-agnostic row representations142

and learns instance optimized aggregation function to produce query-specific table representation.143

Preliminary experiments on TabFact confirm that ROTAR significantly improves the scalability and144

1The TAPASBASE and TAPASBASE (TabFact only) result is reported by [7], while the Table-BERT result is
reported by [2].
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efficiency of table representation learning, with limited performance drop. In the further, we will145

continue to optimize the ROTAR model to improve the speed-accuracy trade-off.146
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A Appendix: Experiment Settings224

We use the huggingface [18] implementation of transformer models including BERT and TAPAS. All225

models share the parameter of virtual batch size 64, learning rate 2× 10−5, weight decay 10−5, the226

AdamW optimizer, and cosine annealing with 2 warm-up epochs. The training process uses early227

stopping of patience 8. All experiments are run in half-precision on a cloud server with a single228

NVIDIA Tesla V100 Tensor Core GPU.229

All features are extended to the same dimension of 2048 by a transformation module, which is a230

two-layer neural network with hidden size equal to the original feature dimension (768 in case of231

BASE models), LeakyReLU activation with negative slope 0.01 and dropout probability 0.1. All232

models share the same downstream binary classifier, which is a three-layer neural network with233

hidden size 2048, LeakyReLU activation with negative slope 0.01 and dropout probability 0.1. The234

query encoder is a separate transformer BASE model.235
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