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Abstract

This paper proposes Masked Encoding for Tabular Data (MET) for learning self-
supervised representations from tabular data. Tabular self-supervised learning
(tabular-SSL) – unlike structured domains like images, audio, text – is more chal-
lenging, since each tabular dataset can have a completely different structure among
its features (or coordinates), that is hard to identify a priori. MET attempts to cir-
cumvent this problem by assuming the following hypothesis: the observed tabular
data features come from a latent graphical model and the downstream tasks are
significantly easier to solve in the latent space. Based on this hypothesis, MET
uses random masking based encoders to learn a positional embedding for each
coordinate, which would in turn capture the latent structure between coordinates.
Extensive experiments on multiple standard benchmarks for tabular data demon-
strate that MET significantly outperforms all the current baselines. For example, on
Criteo dataset – a large-scale click prediction dataset – MET achieves as much as
5% improvement over the current state-of-the-art (SOTA) while purely supervised
learning based approaches have been able to advance SOTA by at most 1% in the
last few years. Furthermore, MET can be > 20% more accurate than Gradient-
boosted decision trees – considered as a SOTA method for the tabular setting – on
multiple benchmarks.

1 Introduction

Recently, self-supervised pre-training (SSL) followed by supervised fine-tuning has emerged as the
state of the art approach for semi-supervised learning in domains such as natural language processing
(NLP) [10], computer vision [7] and speech/audio processing [3]. Given that there is an extensive
amount of raw, unlabeled data in various settings such as healthcare, finance, marketing, etc., most of
which exist in tabular form, extending SSL to tabular data is an important direction of research.

Broadly speaking, there are two dominant approaches to SSL: (i) reconstruction of masked inputs, and
(ii) invariance to certain augmentations/transformations, also known as contrastive learning. Several
prior works [33, 29] have adopted the second approach of contrastive learning for designing SSL
methods for tabular data (tabular-SSL). The underlying structure and semantics of specific domains
such as images remain somewhat static, irrespective of the dataset. So, one can design generalizable
domain specific augmentations like cropping, rotating, resizing etc. However, tabular data does not
have such fixed input vocabulary space (such as pixels in images) and semantic structure, and thus
lacks generalizable augmentations across different datasets. Consequently, there are only a limited
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number of augmentations that have been proposed for the tabular setting such as mix-up, adding
random (gaussian) noise and selecting subsets of features [33, 29].

In this paper, we begin with the following hypothesis: for any tabular dataset, (i) there is a latent
(i.e., unknown/unobserved) graphical model that captures the relations between different coordi-
nates/features, and (ii) classification is easier in the latent space. For example, in the CovType dataset,
where the task is to predict the type of forest (e.g., deciduous, alpine etc.) given features such as
elevation, soil type and so on, extensive research in mountain and forest science has established that
there are very specific relations among different features [5, 2], and leveraging and learning these
relations could yield significant improvements in classification accuracy of machine learning models.

Based on this hypothesis, we propose a masking based reconstruction approach for self supervised
learning for tabular datasets. More concretely, for every unlabeled data point, we randomly choose
a fraction of the coordinates, mask their values, and then train a model to predict values of these
masked coordinates using the remaining unmasked coordinates. We use a transformer architecture
with learnable (positional) embeddings for each coordinate, which capture the relations between
different coordinates. While masked reconstruction task with a transformer architecture has been
successfully used for SSL in computer vision [12] and natural language processing [10], to the best
of our knowledge, this is the first work to successfully apply this paradigm to tabular datasets.

In particular, we demonstrate through experiments on a simple toy tabular setting, how the position
embeddings in a transformer, learned with the masked reconstruction task, can capture the dependency
structure across features. Further, on a real world dataset of forest cover type classification (CovType),
we indeed show that the most correlated positional embeddings correspond to the features which
indeed have meaningful relation between them as corroborated by extensive works in the forest
science.

We evaluate the performance of MET through extensive experiments on several tabular datasets
spanning a wide range in number of examples, number of classes and difficulty. Our experiments
show that MET outperforms current SOTA tabular-SSL methods like DACL [33], SubTab [29],
VIME [36], as well as SOTA tabular supervised algorithms such as gradient boosted decision trees
(GBDT) [20] on all of these datasets, with accuracy improvements up to 5% on some of these datasets.
For example, on Criteo – a popular large scale dataset for click through rate prediction with 45 million
examples – our algorithm achieves 5% improvement in AUROC over the current SOTA [35]. To
put this in context, the SOTA on Criteo has improved by less than 2% over the last six years [18].
Furthermore, on some datasets, MET trained with about 20% of the labelled train-set is as effective
as standard supervised learning methods trained with all the labeled points in the train-set.

To summarize, in this paper, we propose MET, which is a masking based reconstruction task with a
transformer architecture, as an effective approach for tabular-SSL. Conceptually, through experiments
on a toy setting, we show that this approach can learn the relations between different coordinates
in the dataset, which helps in downstream classification. Practically, we show through extensive
experiments on several popular tabular datasets that MET significantly outperforms all the current
SOTA tabular-SSL baselines as well as SOTA supervised approaches.

2 Related Work

Self-Supervised Learning : Self supervised learning (SSL) has shown promising results not
only in the regimes where the labelled training data is scarce but has also shown great empirical
success in training large scale models across various domains like Natural Language Processing and
Computer Vision. SSL can be broadly classified into two categories : Pretext task based approaches
and contrastive learning based approaches. Pretext based SSL approaches solve a "pretext" task like
reconstruction from a masked or a noisy input, in order to learn the underlying distribution of the
unlabelled data. Wav2Vec[3] efficiently trains a large scale speech-to-text model using masking
based reconstruction for learning good speech representations. Similarly, [15, 14] have used masking
for learning speech representations. Masked language modelling has been extensively studied in
literature [10, 24], and has shown quite promising results. Motivated by the success of masking based
approaches in NLP and speech, a recent paper [12] proposed a masked input reconstruction approach
for visual representation learning. Prior to this, [19] also proposed masking although in feature space.
In this paper, motivated by the constraints in tabular setting along with the success of masking based
approaches, we build a purely reconstruction based approach for tabular-SSL.
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Figure 1: MET Framework for tabular-SSL. Given an input, we mask out a fraction of co-ordinates (features).
The masked input is then concatenated with its learnable positional encodings and fed to the transformer based
encoder as input. The obtained encoder output (learnt representations) are then passed through the decoder along
with the mask token. Recontruction loss is then optimized end-to-end.

A concurrent line of work in SSL learns representations using instance level separation tasks as
discussed in [7, 8, 37, 13]. Some other pretext tasks like solving jigsaw puzzles have also been
proposed in [21]. However, all these approaches require domain-specific knowledge to create positive-
negative sample pairs. Some recent advances towards a domain agnostic approach have also been
proposed like [33]. We compare our proposed algorithm MET against such approaches in Section 5.

Adversarial Self supervised learning While adversarial SSL has been explored in the context
of contrastive learning [16], it seems to be less explored for reconstruction based SSL. Our method
MET proposes a novel framework where we try to find adversarial points in the input manifold which
have a high reconstruction loss. [6] have also proposed adversarial learning, although to learn robust
pre-trained models. MET instead explores the use of adversarial search over input manifold to learn
better separable representations for higher accuracy on downstream classification. [27] proposes to
find an adversarial mask which maximizes the distance between the representations of input and its
masked (adversarial) counterpart.

Self Supervised Learning for Tabular Data Reconstruction based SSL has been previously
explored in SubTab [29], which treats it as a multi-view representation learning problem. They try
to learn representations for multiple croppings of the input data and at inference time aggregate
the representations of the croppings (multiple-views). Note that MET performs random masking
over the input space only at the training time, at inference the representation is given by passing
all the co-ordinates through the encoder and hence does not consider the problem as a multi-view
representation learning. [36] uses a combination of predicting the masked tokens and reconstruction.
Both [36, 29] use gaussian noise addition to the input to prevent the auto-encoder from learning
an identity mapping. MET efficiently searches for noise using adversarial search to learn better
representations.

Learning Graphical Models : There is a large body of work on unsupervised learning of probabilis-
tic relations between different coordinates/features, as expressed by a graphical model [9, 1, 4, 22, 17].
A popular approach in these works is to predict the value of any single coordinate using all the re-
maining coordinates. This can however be computationally challenging since this procedure needs to
be repeated for every coordinate. The masking based reconstruction task with a random subset of
coordinates masked in every step can be seen as a computationally efficient way of doing the same
thing. To the best of our knowledge, this is the first work to connect masking based reconstruction
approaches for SSL with the work on learning graphical models.

3



3 Preliminaries

In this section, we formalize the general task of self-supervised representation learning and introduce
all the notations required for laying out the proposed approach MET formally.

Notation: We use xi ∈ Rd to denote an example and xj
i to denote the jth coordinate (or feature) of

xi. Every coordinate in xi i.e. xj
i ∈ R can be either a categorical or a non-categorical value, without

being explicitly specified. Let Si denote the set of masked co-ordinates for xi, and let xSi
i denote the

masked input, i.e. xSi
i consists of only those xj

i such that j ∈ [d] \ Si. Si is chosen randomly for
every sample in every training iteration, and the number of masked coordinates i.e. |Si| is dictated by
the masking ratio hyperparameter.

Self-Supervised Representation Learning: Consider access to a corpus of unlabelled dataset given
by Du = {xi}Nu

i=1 where each datapoint xi ∈ Rd. The general goal of self-supervised learning
is to learn a parameterized mapping fθ : Rd → Rm between the input xi and its representation
fθ(xi) ∈ Rm, such that the representations are well suited for a downstream task as described next.

Evaluation of learned representations: In this paper, we evaluate the quality of learned repre-
sentations through accuracy on a downstream classification task. More concretely, we have access
to a labelled training dataset Dtrain = {(xi, yi)}Ntrain

i=1 where yi ∈ Rk and each (xi, yi) is drawn
independently and identically (i.i.d.) from some underlying distribution D on d×k. The task is to
learn a classifier cϕ : Rd → Rk which minimizes (x,y)∼D [ℓ(cϕ(x), y)], where ℓ is a loss function
such as 0 − 1 loss or cross entropy loss etc. Given the learned representations fθ ∈m, we train a
shallow classifier gµ : Rm → Rk (we use a 2-hidden layer MLP in our default setting) and use the
resulting accuracy to evaluate the quality of learned representations fθ.

4 Method

As described in the previous section, our goal is to learn a parameterized mapping fθ : Rd → Rm

between the input xi and its representation fθ(xi) ∈ Rm. Motivated by the intuition that there exists
a latent structure over different coordinates and that classification is easier in this space, we learn the
latent structure through masked reconstruction. More concretely, we have an encoder represented by
fθ : Rd → Rm and a decoder represented by hϕ : Rm → Rd. The task of the encoder is to take a
noisy version of input example xi, e.g., where some coordinates of xi are masked, and reconstruct
the entire example xi. More formally, as introduced in the previous section, let Si denote the set of
masked coordinates for xi, and xSi

i denote the masked input, then this approach can be written as
minimization of the following function:

Lrec(θ, ϕ) =

Nu∑
i=1

∥xi − hϕ(fθ(x
Si
i ))∥22. (1)

For downstream evaluation task, we discard the decoder hϕ and only use the representations computed
by fθ. At an empirical level, the high level approach of masked reconstruction (also known as
denoising autoencoder) (1) was first proposed in the seminal paper [34], and subsequently instantiated
for various domains such as text, speech and images, which have required several domain specific
insights including architectures of hϕ and fθ, which coordinates to mask etc. ( [10, 30, 12]). In
parallel, there was a long line of theoretical work on learning graphical models from data starting
with [9]. The state of the art approaches for this again use a similar masked reconstruction task:
recover the value of a particular coordinate, given the values of all the remaining coordinates.
Interpreting the masked reconstruction task (1) through the lens of learning graphical models, we
observe that (1) has the ability to learn the underlying latent structure among different coordinates,
thereby making the classification task easier.

Encoder-Decoder Architecture and the Framework: Given that transformers [31] explicitly try
to capture the relation between different coordinates through positional embeddings and attention
mechanism, they are a natural choice for encoder fθ as well as decoder hϕ. Below we describe in
detail the whole framework i.e. input to the transformer encoder, the input to the transformer decoder
and how we obtain the reconstructed input.
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Algorithm 1: MET : Masked Encoding Tabular data

Input :Unlabelled data Du = {xi}Nu
i=1, masking ratio m ∈ [0, 1], Encoder fθ, Decoder

hϕ, projection radius ϵ, weight of adversarial loss λ
for iteration = 0, 1, ... N − 1 do

for xi ∈ Du do
Si ⊂ [d] s.t. |Si| = m ∗ d /* Random subset of coordinates to mask */
x̂i = hϕ(fθ(x

Si
i )) /* Try to reconstruct from masked input. */

Lstd
rec = ∥xi − x̂i∥22 /* Standard reconstruction loss. */

h ∼ N (0, Id)/
√
d /* Initialize adversarial perturbation. */

for steps in 1, 2, . . . adv_steps do
/* Find adversarial perturbation h to maximize reconstruction loss

using gradient ascent. */
x̂i = hϕ(fθ((xi + h)Si))
Lrec(h) = ∥xi − x̂i∥22
h = h+ η ∇hLrec

∥∇hLrec∥
h = h

∥h∥α where α = ∥h∥ · 1[∥h∥ < ϵ] + ϵ · 1[∥h∥ ≥ ϵ]

x̂i = hϕ(fθ((xi + h)Si))

Ladv
rec = ∥xi − x̂i∥22 /* Adversarial reconstruction loss. */

Ltotal = Lstd
rec + λ · Ladv

rec /* Final loss is a sum of standard and adversarial
reconstruction losses. */

(θ, ϕ) = (θ, ϕ)− η(∇θLtotal,∇ϕLtotal) /* Gradient descent on θ and ϕ. */

• Given xi ∈ Rd and the set of masked coordinates Si, let zji ∈ R1+e denotes the input embedding
corresponding to the jth coordinate of xi, where j ∈ [d] \ Si. z

j
i is constructed by concatenation of

pej ∈e, a learnable positional encoding corresponding to the jth coordinate and xj
i ∈ R, the value

of jth coordinate in xi.
• Given xi ∈ Rd and the set of masked coordinates Si, then zi ∈ R|[d]\Si|×(1+e) denotes the input

corresponding to the masked input xSi
i ∈ R|[d]\Si| to the transformer encoder (fθ).

• The output of the transformer encoder (also the learnt representations) is given by wi ∈|[d]\Si|×(1+e),
such that wi = fθ(zi).

• Let vi ∈Si×(1+e) denote the representation for the masked coordinates, constructed by concatena-
tion of pej with a learnable mask parameter u ∈ , ∀j ∈ Si.

• The reconstructed input x̂i ∈d is then given by x̂i = hϕ([wi, vi]), where hϕ denotes the transformer
decoder.

Adversarial loss: In the context of supervised learning, several papers have demonstrated that
adversarial training can yield more robust features [28] that are better for transfer learning [26].
While an adversarial loss function has been observed to encourage learning of robust features in
contrastive SSL [6, 16], to the best of our knowledge, it does not seem to have been explored in the
context of masked autoencoders. In this work, we demonstrate that an adversarial version of the
reconstruction loss works better than standard reconstruction loss. More concretely, the adversarial
reconstruction loss is given by:

Ladv
rec (θ, ϕ) =

Nu∑
i=1

max
δ:∥δ∥≤ϵ

∥xi − hϕ(fθ(x
Si
i + δ))∥22. (2)

In this paper, we constrain the adversarial noise δ in an ϵ radius L2 norm ball around the input data
point xi, where ϵ is chosen from a grid-search in {2, 4, 6, 10, 12, 14}.

Finally, MET minimizes the sum of loss functions given in (1) and (2) :

LMET
rec = Lrec + λLadv

rec . (3)

We fix λ = 1 in all our experiments. The overall algorithm for MET, which minimizes (3) is given in
Algorithm 1. For consistency of notation, we present a non-batch version of the algorithm.
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Figure 2: Cosine similarity between the learnt posi-
tion embeddings

Figure 3: Downstream accuracy as a fraction of la-
beled data.

4.1 Analysis on Toy Dataset

As explained previously in Section 1, our proposed approach MET relies on capturing and learning
the latent graphical model that defines the relation between various features (coordinates) of the
tabular dataset. We first show that MET is indeed able to learn this latent graphical model by
presenting some interesting results on a 10-dimensional toy dataset.

Let each datapoint xi ∈ R10 be sampled from a linear graphical model as follows (recall that xj
i ∈ R

denotes the jth coordinate of xi) :

x0
i ∼ N (0, 1) (4)

xj
i = xj−1

i + nj ,∀j ∈ [1, 10]; where nj ∼ N (0, 1) (5)

Further, for the downstream binary classification task, let the label yi = 1[|n1| ≥ Φ−1(0.5)] where
Φ−1 denotes the inverse gaussian CDF.

First, on the downstream task, our proposed approach MET (99.87 AUROC) outpeforms all the
baselines, most competitive being Gradient Boosted Decision Trees (97.86 AUROC) and Gaussian
featurization (see Section 5.1) which gets 98.07 AUROC. But more importantly, MET is able
to identify the relation between the consecutive coordinates, as demonstrated by the high cosine
similarity scores for the consecutive coordinates in Figure 2. Note that MET learns the reconstruction
task and hence it is able to learn the whole underlying graphical model. Hence, it can potentially
perform various downstream tasks with high accuracy, although only the first two coordinates might
have been relevant for the binary classification in this particular case. More detailed results for other
baselines along with AUROC and accuracy numbers can be found in the Appendix.

Further, in the next section, we show that similar trends even hold on real world tabular datasets,
where MET is able to identify the set of features with meaningful relation.

5 Experiments

Here, we empirically evaluate our proposed approach MET against tabular-SSL methods, along with
other classical baselines as described in subsection 5.1. We experiment with common tabular dataset
benchmarks like the permuted MNIST, permuted FashionMNIST and permuted CIFAR-10. Further,
we work with two other common tabular datasets from the UCI machine learning repository [11] :
Forest CovType and Adult Income which are described in Section 5.3. TODO saching once results
are finalized

5.1 Baselines and Existing Methods

We compare MET with the following baselines:

• VIME [36] : A SSL approach for tabular dataset, which uses a combination of masked token
prediction and reconstruction loss. Note that MET proposes masked input reconstruction.
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• SubTab [29] : SubTab views SSL as a multi-view representation learning problem, where represen-
tations from multiple croppings are aggregated at test time.

• DACL [33] : A domain agnostic contrastive learning baseline which uses mixup as an augmentation.
We specifically use DACL+ which uses geometric mean based mixup.

• MLP : We also compare against this natural baseline, wherein we train a MLP over the raw tabular
data (and not the learnt representations) with the available labeled samples.

• Random Forest (RF): We train a random forest with 100 decision trees over the raw tabular data
using the available labeled samples. We choose maximum depth and minimum samples in a leaf
node by performing a grid-search over {2, 5, 10, 20, auto} and {1, 2, 5} respectively.

• Gradient Boosted Decision Trees (GBDT): We train a gradient boosted decision tree over raw
tabular data, choosing the parameters by grid search over maximum depth in {2, 5, 10, 20, auto},
minimum samples in leaf node over {1, 2, 5} and learning rate in {0.1, 0.01, 0.001, 0.0001}.

• Random Featurization (MET-R): To check the effectiveness of the learnt representations, we
compare against fine-tuning an MLP over the representations from a random encoder i.e. a
randomly initialized and fixed transformer. This is denoted by MET-R.

• Random Gaussian Featurization (RF-G) : Here, we compute standard random kitchen sink [25]
style features, i.e., ϕ(x) = Rx is the embedding of point x ∈ Rd. Random features are known to
be asymptotically an accurate approximation of the RBF kernel, which in turn is known to be a
highly accurate and in fact, a “universal" classifier for tabular data. Note that we fix embedding
dimension of RF-G to be same as that of MET.

5.2 Implementation Details

We use transformers [32] as the backbone for both the encoder and the decoder. Embedding dimension
for the encoder and the decoder is chosen from a gridsearch in {64, 100, 128}, feedforward dimension
from {64, 100, 128}, encoder and decoder depth from {1, 3, 6} and the number of heads from
{1, 2, 3}. The weight for adversarial reconstruction loss λ in MET (see Algorithm 1) is set to 1. We
share the exact hyper-parameters for all the experiments in the appendix. All the experiments have
been performed on a cluster of Tesla P100 GPUs.

5.3 Datasets

• MNIST: Permuted, Normalized and Flattened version of standard MNIST dataset.

• FMNIST: Permuted, Normalized and Flattened version of standard Fashion-MNIST dataset.

• CIFAR-10: Permuted, Normalized and Flattened version of standard CIFAR-10 dataset.

• CoverType: Forest CoverType(CoverType) is a UCI dataset where the task is to predict seven
different types of forest cover type from cartographic variables of a 30x30 meter cell.

• Income: Adult Income(Income) is a UCI dataset where the binary prediction task is to determine
whether a person makes over $50K a year based on census data.

• Obesity: Obesity is a relatively small dataset of 253 samples with 465 features representing the
human gut metagen-omic samples of the obesity cohort available publicly.

• Criteo: Criteo consists of 45M samples, each with 39 features pertaining to display ads collected
for a week at CriteoLabs for click-through-rate(CTR) prediction.

A more detailed explanation of the datasets is available under appendixA.2

5.4 Downstream Classification

In this section, we compare MET against various baselines as mentioned in subsection 5.1. We
compare the downstream classification accuracy of various representations. Specifically, we train an
MLP over the learnt representations using all the available labeled dataset samples; see Section 5.2.

Multi-Class Classification Benchmarks : Table 1 compares accuracy of MET with downstream
classification against tabular-SSL methods and supervised learning baselines on multi-class classifi-
cation benchmarks. Both MET (adversarial noise + masking) and MET-S (only masking) outperform
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Table 1: Downstream classification accuracy on four common multi-class tabular datasets, comparing MET
against various baselines. Table 2 shows additional results on new datasets for binary classification setting. MET
uses adversarial training + masking for reconstruction based self-supervised-learning whereas MET-S is an
ablation where only masking is used. MET outperforms the baselines across the all the datasets.

Type Methods FMNIST CIFAR10 MNIST CovType

Supervised Baseline

MLP 87.62% 16.50% 96.95% 65.47%
RF 88.43% 42.73% 97.62% 71.37%

GBDT 88.71% 43.43% 100% 72.96%
RF-G 89.84% 29.32% 97.65% 71.57%

MET-R 88.84% 28.94% 97.44% 69.68%

Self-Supervised Methods
VIME 80.36% 34.00% 95.77% 62.80%

DACL+ 81.40% 39.70% 91.40% 64.23%
SubTab 87.59% 39.34% 98.31% 42.36%

Our Method MET-S 90.94% 48.00% 99.01% 74.11%
MET 91.36% 47.82% 99.19% 76.71%

Table 2: Downstream classification accuracy and auroc scores on three common tabular datasets with binary
classification task, comparing MET against various baselines. MET outperforms all the baselines even on the
AUROC metric.

Datasets Metric MLP RF GBDT RF-G MET-R VIME SubTab MET

Obesity Accuracy 62.4 65.99 64.4 58.79 51.875 59.23 67.48 76.88
AUROC 52.3 64.36 64.4 54.45 53.2 57.27 64.92 71.84

Income Accuracy 84.36 85.88 86.01 85.59 75.51 86 84.43 86.25
AUROC 89.39 91.53 92.5 90.09 83.48 89.01 88.95 93.85

Criteo Accuracy 74.28 74.11 57.97 74.62 76.21 74.2 73.02 78.49
AUROC 79.82 77.57 78.77 80.32 79.17 74.28 76.57 86.17

the baselines across all the datasets. For example, on the permuted Fashion MNIST dataset, MET
achieves an accuracy of 91.36%, outperforming all the other tabular SSL baselines like SubTab
(87.59%). Similarly, on CovType, MET is about 10% more accurate DACL+, and in fact about 34%
more accurate than SubTab, perhaps due to lack of semantics in neighbouring columns in the dataset.
Overall, we observe that MET gives an average improvement of 3.2% accuracy compared to the
nearest competitive baseline, establishing MET as a new state-of-the-art approach for self supervised
learning on tabular data.

Here, we would like to make two key points.
a) Note that using the same embedding dimensions, MET is able to give up to 18% more accurate
classifier than RF-G embeddings. This is interesting because RF-G embeddings are also able to
capture non-linear features in the data; in fact, it can approximate RBF kernel itself. But, due to
self-supervised training with the entire unlabeled data, MET can capture the data manifold more
accurately, while RF-G are completely independent of the data distribution. This indicates the
importance of further investigation of data-distribution based (random) embedding methods.
b) Here, we use a modified and much harder version of CovType, where the key categorical features
like soil type are represented by their category index, instead of one-hot vectors. This immediately
imposes an ordering on categories which is incorrect, and hence the representation learning method
has to somehow learn to embed such coordinates in something similar to one-hot vectors, which in
absence of additional domain information is challenging. Naturally, methods like MLP struggle on
this dataset, but MET is able to get a reasonable accuracy which is 11% higher than MLP.

Binary Classification Benchmarks : Table 2 presents results on three real-world binary classifi-
cation tabular datasets. Consider Criteo, which is a large scale (45 million training sample) click
prediction dataset. MET seems to scale seamlessly to these large scale datasets, outperforming all the
baselines, giving an AUROC of 86.37 compared to MET-R (83.25 AUROC) and GBDT which has
just 74.47 AUROC. Similar trends hold on Income and Obesity datasets.

Accuracy with a fraction of labeled training data: Next we compare our proposed algorithm
MET against the baselines when only a fraction of labeled data is used for the supervised training.
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Specifically, we vary the fraction of labeled data used for training the downstream classifier from 20%
to 100% and compare the obtained downstream classification accuracies with the baselines. Figure 3
shows the variation of accuracy with the fraction of labeled data for MET, comparing against the
baselines like gaussian random featurization (RF-G), learning MLP directly over raw features and
a random encoder (MET-R). We observe that MET outperforms the baselines for all the choices of
fraction of labeled data used for supervised learning.

Concatenated vs averaged embeddings: Next, we try two approaches for the task of getting good
tabular representations from co-ordinate level representations:

• Concatenation : Concatenating co-ordinate level representations learnt by MET to represent
tabular level representations.

• Averaging : Taking an average of representations learnt by MET over all co-ordinates to represent
tabular level representations.

We try above mentioned approaches for FMNIST and CovType. For both datasets, concatenation
significantly outperforms averaging. For CovType, concatenation and averaging obtain 74.11% and
61.87% accuracies respectively and for FMNIST, they obtain 90.94% and 88.64% respectively.

Effect of adversarial reconstruction: Next, we analyze the effect of using gaussian noise along
with masking for reconstruction based SSL on tabular datasets. In Table 1, observe that MET always
outperforms or matches MET-S (without adversarial noise), and in some cases like CovType gives
upto 2.5% improvement compared to the non-adversarial counterpart.

6 Conclusion and Limitations

In this paper, we proposed a purely reconstruction based SSL algorithm, MET, for representation
learning on tabular datasets. The two key ideas in MET are (i) use a concatenation of representations
for all features instead of averaging, and (ii) use adversarial reconstruction loss in addition to the
standard loss. Through experiments on five tabular datasets, we showed that MET achieves a new
SOTA result for downstream classification on these datasets, improving over previous contrastive
based approaches by 3.2% on average.

While reconstruction based SSL has been shown to learn powerful representations across various
domains such as text [10], vision [12] as well as tabular (this paper), a thorough understanding of why
reconstruction loss promotes linearly separable representations is missing in the literature. In this
paper, we took a step forward by proposing a simple dataset, that can act as a test bed for answering
this question. We showed empirically that while this dataset is not linearly separable in the input
space, it became linearly separable using MET representations. We believe that a mathematical
proof of this phenomenon could shed light on why and how reconstruction based approaches learn
useful representations. We also demonstrated that using a concatenation of representations of all
features/coordinates gives substantially better results than pooling of all token level representations
as done in vision [12] and text [10]. This is intuitive as the average representation of all tokens
is not specifically trained to be useful for the downstream task. At the same time, concatenation
significantly increases the representation dimension as well as the complexity of the downstream
finetuning model. Hence, it can exacerbate the risk of overfitting. For tabular-SSL, our results ruled
out this case. However, a thorough investigation of this aspect is also an interesting direction for
future work.
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A Appendix

A.1 Hyper-Parameters

In this section, we share the exact hyper-parameters of MET for replicating the results on all the five
tabular datasets. Note that Encoder Depth refers to the number of transformer layers in the encoder
stack and Decoder Depth refers to the number of transformer layers in the decoder stack. Adversarial
Learning Rate (lr_adv) refers to the learning rate used for gradient ascent in adversarial loop and
Learning Rate(lr) refers to the learning rate for gradient descent on reconstruction loss. We perform a
grid-search for Embedding dimension(e) and Feed-forward dimension(fw) in {64, 100, 128}, Num-
ber of Heads in the transformer architecture in {1, 2, 3}, encoder and decoder depth in {1, 3, 6}, Learn-
ing Rate(lr) in {1e−1, 1e−2, 1e−3, 1e−4, 1e−5}, masking percentage(m) in {30, 50, 70, 80, 90}, ad-
versarial steps(adv_steps) in 1, 2, 4, radius of L2-norm ball(ϵ) in {2, 6, 10, 12, 14} and learning rate
of gradient ascent step(lr_adv) in {0.1, 0.01}. The optimal set of hyper-parameters for various
datasets obtained are mentioned in Tables3 and 4. Note that all the ablation studies are conducted
using these parameters and MET-S.

Table 3: We share the exact hyper-parameters for replicating the results with MET.
Embedding

Dimension(e)
Feed-forward

Dimension(fw)
Number of

Heads
Encoder
Depth

Decoder
Depth

Fashion MNIST 64 64 1 6 1
CIFAR10 100 64 2 3 3
MNIST 64 64 1 6 1

CovType 100 64 1 1 1
Adult Income 64 64 1 3 6

Table 4: We share the exact hyper-parameters for replicating the results with MET.

lr
Masking

Percentage(m)
Adversarial

Steps(adv_steps)
L2 Norm Ball

Radius(ϵ)
Adversarial lr

(lr_adv)
Fashion MNIST 1e−5 70 2 2 1e−2

CIFAR10 1e−4 70 3 14 1e−2

MNIST 1e−4 70 2 12 1e−2

CovType 1e−4 50 5 4 1e−1

Adult Income 1e−3 80 1 6 1e−1

A.2 Datasets

MNIST1: The MNIST dataset of handwritten digits consists of 28x28 dimensional images, which are
then flattened to get 784 coordinates in tabular form. The classification task consists of ten classes,
one for each digit. A split of 60,000 entries as the train set and 10,000 entries as the test set is used as
per the split for the original dataset.
FMNIST: Fashion-MNIST(FMNIST) is a dataset of Zalando’s article images consisting of 28x28
dimensional images and is proposed as a more challenging replacement dataset for the MNIST dataset.
The data is flattened to get 784 coordinates in tabular form and has ten classes. A split of 60,000
entries as the train set and 10,000 entries as the test set is used as per the split for the original dataset.
CIFAR-10: The CIFAR-10 dataset contains 60,000 color images each of size 32x32 belonging to
ten different classes with 6,000 images of each class. We flatten it to get 3072 coordinates in tabular
form and use a split of 50,000 entries as the train set and 10,000 entries as the test set is used as per
the split for the original dataset.
CoverType: Forest CoverType(CoverType) is a UCI dataset where the task is to predict forest cover
type only from cartographic variables of a 30x30 meter cell, as determined from US Forest Service
Region 2’s resource information system. The data is not scaled and contains binary columns of data
for qualitative independent variables: wilderness areas and soil types. It is a 7 class classification

1The data is normalized and shuffled for all datasets.
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problem and consists of 54 features out of which one-hot vectors of wilderness area and soil type
make up for 44 features. We replace them as two features by taking an argmax over the one-hot
vectors and it reduces to 12 features in a tabular form. This makes the problem harder since the
categorical features are now represented as integers instead of one-hot representations2. A split of
11,340 entries as train set and 565,892 entries as test set is used as per the split for the original dataset.
Income: Adult Income(Income) is a UCI dataset where the prediction task is to determine whether a
person makes over $50K a year based on census data. It consists of a mix of six continuous and eight
categorical fields. Similar to CoverType dataset, we use integers instead of one hot representation for
the categorical features and get 14 features in a tabular form . A split of 30,162 entries as train set
and 15,060 as test set is used as per the split for the original dataset.
Obesity: Obesity[23] is made of human gut metagen-omic samples of obesity cohort available
publicly. Each sample has 465 features representing them and we use a binary classification task of
predicting whether the sample is non-obese or obese. All 465 features are continious. The features
are normalized and shuffled before feeding it to the model. It is a relatively small dataset of 253
samples, hence we use a 90-10 train-test split with a 10-fold cross validation for evaluation purposes.
Criteo: Display advertising is a billion dollar industry and an important use case of machine learning.
Criteo consists of one-week data from CriteoLabs for click-through-rate(CTR) prediction summing
up to 45M samples with 39 features each. Out of the 39 features, 26 are categorical, some of which
have as many as 5M distinct values in the form of anonymized string and the other 13 are real-valued
fields.

2Consequently, our accuracy numbers are not directly comparable to standard results on this dataset.
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