Generic Entity Resolution Models

Jiawei Tang* Yifei Zuo
American School of Doha University of Science and Technology of China
23jtang@asd.edu.qa dune@mail.ustc.edu.cn
Lei Cao Samuel Madden
MIT CSAIL/Univeristy of Arizona MIT CSAIL
lcao@csail.mit.edu madden@csail .mit.edu
Abstract

Entity resolution (ER) — which decides whether two data records refer to the same
real-world object — is a long-standing data integration problem. The state-of-the-art
results on ER are achieved by deep learning based methods, which typically convert
each pair of records into a distributed representation, followed by using a binary
classifier to decide whether these two records are a match or a non-match. However,
these methods are dataset specific; that is, one deep learning based model needs
to be trained or fine-tuned for each new dataset, which is not generalizable and
thus we call them specific ER models. In this paper, we investigate generic ER
models, which use a single model to serve multiple ER datasets over different
datasets from various domains. In particular, we study two types of generic ER
models: Employs foundation models (e.g., GPT-3) or trains a generic ER model.
Our results show that although GPT-3 can perform ER with zero-shot or few-shot
learning, the performance is worse than specific ER models. Our trained generic
ER model can achieve comparable performance with specific ER models, but with
much less train data and much smaller storage overhead.

1 Introduction

Entity resolution (ER) (a.k.a. record linkage), a fundamental problem of data integration [5] and
cleaning [[1]], has been extensively studied for several decades [7] from different aspects, including:
declarative rules [22} |29]]; machine learning based methods (or probabilistic methods) [2, [12], deep
learning based methods [13} |18 [8]; and crowdsourcing based methods [28]. ER has a wide spectrum
of critical applications such as healthcare [7]], e-commerce [10], data warehouses [30], etc.

Deep learning for entity resolution. The state-of-the-art results on ER are achieved by deep learning
based methods [[13}[1818]. These methods typically consist of two steps: using a feature extractor (i.e.,
an encoder) to convert an entity pair into a representation, and then employing a binary classifier to
map this representation to a Boolean output as either a match (1) or a non-match (0). These solutions
are dubbed as specific ER models, because each model serves only one ER dataset.

Limitations of specific ER models. There are three main limitations.

1. Need a lot of train data for each new ER dataset. Existing deep learning based ER solutions,
even with pre-trained language models as the encoder (e.g., Ditto [13]] uses BERT [6] and
RoBERTa [14])), require a lot of labeled train data for each new ER dataset, while labeled
train data for ER is expensive to obtain. Although transfer learning [26} 25, [16] and active

*Work done while interning at MIT CSAIL.

Table Representation Learning Workshop at NeurIPS 2022.

learning [15] have been studied for ER, sufficient train data is still needed for each ER
dataset.

2. Lack of generalizability. The ER solution that is specifically trained for one dataset cannot
be easily generalized to other datasets.

3. Large sizes. It requires to have one specific deep learning model for each dataset, but there
can have tens or hundreds of ER datasets, which cause a large storage overhead.

Generic ER models. In this paper, we seek to answer a different question: Whether we can develop
generic ER models that can be used for many datasets from different domains. Recent advances
from the NLP community shows that unified models, such as GPT-3 [3]] and TS5 [21]], can well serve
many different downstream datasets and tasks, which suggests that it might be feasible for developing
generic ER models as well.

Contributions. Our notable contributions for generic ER models are summarized as follows.

1. Foundation Models. We explore the power of foundation models, which are essentially giant
frozen language models, such as GPT-3, for answering ER questions.

2. A Trained Generic ER Model. We train a generic ER model using multiple ER datasets from
different domains, based on pre-trained language models (e.g., BERT or RoBERTa).

3. Empirical Study. We compare the above methods with specific ER models. Our main
empirical findings are: (a) specific ER models outperform GPT-3 on ER, and (b) the trained
generic ER model achieves comparable performance with specific models but does not need
any train data on a new dataset and has a much smaller size. These results show that generic
models shine some light on ER, and will be an interesting direction for both academia and
industry.

Organization. Section [2| discusses related work. Section [3| introduces the background of deep
learning for ER. Section4|describes the two generic models, using foundation models or a trained
model, for ER. Section [5]presents our empirical findings. Section[6|concludes this paper and discusses
future work.

2 Related work

The paper [9] surveys traditional, non-deep learning based, ER methods. In this section, we will
focus on recent advances of applying deep learning for ER.

2.1 Word embedding based methods

DeepER [8] and DeepMatcher [[18] are earlier work of applying deep learning for ER. Both are based
on word embeddings, such as GloVe [20]] or fastText [[17]. Technically, DeepER [8]] designs two
deep neural networks to extract features of entity pairs, and models ER as a binary classification task,
DeepMatcher [18] systematically defines the architecture and design space of DL solutions for ER.

2.2 Pre-trained language models

Ditto [[13] first applies pre-trained language models (e.g., BERT or RoBERTa) to ER, which can
reduce the number of training data needed. Thanks to the knowledge learned by these pre-trained
language models, Ditto outperforms DeepER and DeepMatcher. RPT [23]] pre-trains an encoder-
decoder model using tabular table and can serve multiple data preparation tasks, including entity
resolution, data cleaning, and information extraction.

2.3 Transfer learning and domain adaptation

Domain adaptation, which is a case of transfer learning, is an effective way to reuse labeled source
data to different target data, and has been studied for ER. The work [24] introduces a method to
re-weight source data and make them adaptable for the target. [[11] applies domain adaptation to ER
with gradient reverse. A recent work [27]] systematically studies domain adaptation for ER, especially
comparing various design choices.

—— match s non-match

Company Address City Company Address City

P Sherman Sherman Sky Tower, 32
at Orthodontics 32 Wallaby Way Sydney, NSW -----{ Orthodontics Ltd. Wallaby Way Sydney b1
a2 Ace Radio 18 Albert Road Melbourne = Woolworths 1248/Cnr Part St. Sydney, NSW b2

Figure 1: Sample entity resolution problem: match/non-match pairs.

The methods discussed above are specific ER models. That is, they all focus on how to improve the
model performance or reduce the size of train data for a specific ER dataset. Different from them,
our goal is generic ER models; that is, a single ER model that can be directly used on a new dataset
without any train data or with only a few train data.

3 Background

3.1 Entity resolution

Entity resolution. Let A and B be two relational tables with multiple attributes. Each record a € A
(or b € B) is referred to as an entity. The problem of entity resolution (ER) is to find all the entity
pairs (a,b) € A x B that refer to the same real-world objects.

Match/non-match. An entity pair (a, b) is said to be a match (resp. non-match) if they refer to the
same (resp. different) real-world objects.

Example 1 Figureshows two tables, A = {a1,a2}, B = {b1,ba}. There is only one match pair
(a1, b1), while the other three non-match pairs: (a1,b2), (az2,b1), and (az,bs). O

Train data for ER. Each train data point is an entity pair (a, b) associated with a 0/1 label. Note that
the train data is generally needed for any ER solutions, for discovering ER rules [22| 29]], training
machine learning based [2, [12]] or deep learning based ER models [13, 18} 8]

3.2 Deep learning for entity resolution

Existing deep learning methods for ER typically use a framework that consists of an Encoder and a
Matcher, as shown in Figure Q}

X
Encoder ___| Matcher
(a, b) —> 0 E—~ Yl

Figure 2: Deep learning for entity resolution.

Specifically, given an entity pair (a,b), an Encoder E will convert this pair into a d-dimensional
vector-based representation, denoted by x, i.e., x = E(a, b). Then, the representation x will be fed
into a Matcher M, which is a deep learning based binary classification model. The Matcher M takes
x as input and outputs a 0/1 label.

Note that, in ER, there are natural language terms, such as company names, addresses, and so on,
as shown in Figure[I] Hence, a common strategy is to fine-tune a pre-trained language model (e.g.,
BERT or RoBERTa) as the Encoder.

Entity serialization. Each entity a with a list of attribute-value pairs (att;, val;)1<i<r will be
serialized into a token sequence as:

serialize(a) = [ATT] atty [VAL] valy ... [ATT] atty [VAL] valy,

where [ATT] and [VAL] are two special tokens for the starting of attributes and values respectively.

Example 2 Entity al in Figure[l|will be serialized to:
[ATT] Company [VAL] P Sherman Orthodontics [ATT| Address [VAL] 32 Wallaby Way [ATT] Ciry
[VAL] Sydney, NSW O

Entity pair serialization. Each entity pair (a, b) will be serialized into a token sequence as:

serialize(a, b) = [CLS] serialize(a) [SEP] serialize(b) [SEP],

where [SEP] is a special token separating the two entities and [CLS] is a special token in BERT to
encode the entire sequence.
Example 3 Entity pair (al,bl) in Figurewill be serialized to:

[CLS] [ATT] Company [VAL] P Sherman Orthodontics [ATT| Address [VAL] 32 Wallaby Way [ATT]
City [VAL] Sydney, NSW [SEP] [ATT| Company [VAL] Sherman Orthodontics Ltd. [ATT| Address
[VAL] Sky Tower, 32 Wallaby Way [ATT] City [VAL] Sydney [SEP] O

3.3 Specific entity resolution models

We say that an ER model is a specific model, if it fine-tunes a pre-trained language model using only
one dataset.

Therefore, a specific ER model is typically trained using one dataset and thus can server only one ER
dataset.

3.4 Generic entity resolution models

We say that an ER model is a generic model, if it can serve many ER datasets from different domains.

Intuitively, a generic ER dataset must be trained using datasets from multiple domains, such that it
can learn cross-domain knowledge and then serve multiple ER datasets.

4 Methods

We study two types of generic ER models: Employs foundation models (e.g., GPT-3) or trains a
generic ER model using the model architecture as shown in Figure 2}

4.1 GPT-3 for entity resolution

GPT-3 [3] is an autoregressive language model that uses deep learning to produce human-like text,
which has shown remarkable results on many tasks. Here, we investigate whether GPT-3 can decide a
pair of entities is a match.

To this purpose, given a pair of entities (a, b), we need to turn this pair into a text prompt and then
ask GPT-3. Let a be a list of attribute-value pairs (atty, val?)1<i<m, and b be a list of attribute-value

pairs (att?, val?)lg j<n, the entity pair will be serialized into a prompt as:

prompt = A is att{ : valf, ..., att;, : valy,
Bis att® - vall, ... att’ : val®
Are A and B the same?

For each entity pair, we will feed its corresponding prompt to ask GPT-3. Under the zero-shot setting,
GPT-3 can answer questions like “A and B are not the same”, “No, A and B are not the same”,
or simply “No”. Note that a recent work [19] uses similar prompts for ER when interacting with
foundation models.

Example 4 Consider entity pair (al,bl) in Figure we will change it into a prompt as below to ask
GPT-3:

prompt = A is Company: P Sherman Orthodontics, Address: 32 Wallaby Way, City: Sydney, NSW
B is Company: Sherman Orthodontics Ltd., Address: Sky Tower, 32 Wallaby Way, City: Sydney
Are A and B the same?

Given the above prompt, in the zero-shot setting, GPT-3 will return “Yes”, indicating that (al,bl) is
a match. a

4.2 A trained generic entity resolution model
We employ the same deep learning architecture as shown in Figure[2] We use a lot of ER benchmarks
from different domains to train the model (see Section [5.2.1| for more details). What we want to test

is whether the trained model can be directly applied to new ER datasets with zero-shot or few-shot
learning.

S Experiments

5.1 GPT-3 for entity resolution
5.1.1 Experimental setting

Datasets. We randomly used four ER benchmarks, Restaurantl, Bikes, Moviesl, and Books, from
the Magellan Data Repository [4]. Table[T|provides statistics of the used datasets.

Table 1: Statistics of ER datasets used for GPT-3.

Dataset #-Categorical | #-Numerical | #-Temporal | Missing Values | #-labels (#-positive/#-negative)
Restaurantl | 3 0 0 None 450 (124/326)

Bikes 3 2 0 None 450 (130/320)

Moviesl 2 0 1 None 600 (190/410)

Books 7 1 1 Many 397 (92/305)

Zero-shot and few-shot. We used the Davinci model of GPT—3H For zero-shot learning, we use
the method discussed in Section . T|to generate the prompt for each entity pair and ask GPT-3. For
few-shot learning, we randomly sample two positive examples (i.e., matched entity pairs) and two
negative examples (i.e., non-matches entity pairs), serialize each example as discussed in Section[4.]
and adds the true label as one-shot, and combine the above serialized examples and the question
prompt to ask GPT-3 (i.e., 4-shot learning).

Along with the prompt, another important setting for GPT-3 is Temperature, which ranges within
[0, 1] and controls how much randomness is in the output. Temperature = 0 eliminates randomness
and GPT-3 will always produce the same output for a given prompt. Setting Temperature = 1 will
deliver very inconsistent and sometimes interesting results. Which Temperature value to use is
application dependent.

Evaluation metrics. Let TP be true positives, FP be false positive, and FN be false negatives. We
use Precision, Recall, and F1-score to measure the result of GPT-3, which are standard to measure
ER solutions [12} 18] and are defined as:

Precision = TP/(TP + FP)
Recall = TP/(TP + FN)
Fl-score = (2 x Precision x Recall)/(Precision + Recall)

*https://beta.openai.com/docs/models/gpt-3

https://beta.openai.com/docs/models/gpt-3

5.1.2 Experimental result

Experiment 1: zero-shot by varying temperature. In the first group of experiments, we tested the
performance of GPT-3 for ER by varying the Temperature value in 0, 0.3, 0.6, 0.8 and 1. The best
results are highlighted in bold.

Table 2: Zero-shot of GPT-3 by varying temperature (P: precision; R: recall; F1: Fl-score).

Temperature 0 0.3 0.6 0.8 1

Dataset P R | FI P R | F1 P R | F1 P R | F1 P R | FI
Restaurantl 99 | .92 | .95 1 |89]94] 97| .82 | 8| 96| .76 | .85 || .91 | .82 | .86
Bikes 1 d |18 1 [1222 82| .18 | 29| 56| .19 | .29 || .54 | .25 | .34
Moviesl J1 | 37 49| 63 | 48 | 54 || 47 | 58 | 52 || 46 | .65 | 54 || 46 | .70 | .56
Books 63 | .60 | 62 || 56 | 49 | 52 || 54 49 | S1 || 4T | S| 49 || 37| 5T | 45

Table 2| shows that the relationship between Temperature and F1-score is not consistent, similar to
Precision and Recall. For example, The F1-score will decrease when increasing the Temperature val-
ues for Restaurantl and Books, but the F1-score will increase along with increasing the Temperature
values for Bikes and Movies1.

Hence, the next question is whether ensembling the results from multiple Temperature values can
achieve a better result. Because ER is a Boolean question, the result is either match or non-match.
‘We use majority voting on the five Temperature values, as the ensembled result from GPT-3. The
result is shown in Table

Table 3: Zero-shot of GPT-3 by ensembling results from multiple temperature values.

Temperature || Ensembled Result
Dataset P R F1
Restaurantl 99 | .88 93
Bikes 1 .09 17
Moviesl .65 .6 .63
Books 58 | .53 .58

Table |3|shows that the effect of ensemble is not obvious. Only for Moviesl, the ensembled F1-score
outperforms the best F1-score in Table[2] which suggests that ensemble should be used in practice.

Summary 1. A safe choice is to set Temperature = 0, i.e., always picking the answer with the highest
probability, which will be used by default in the rest of the paper.

Experiment 2: few-shot learning. Next we test few-shot learning of GPT-3 for ER, as discussed
in Section [5.1.1] The goal is to test the hypothesis that if few-shot learning is always better than
zero-shot learning for the ER problem. We show sample few-shot learning results of GPT-3 in Table[4]
for Restaurant1 and in Table [3] for Movies1.

Table 4: Sample few-shot results of Restaurantl. Table 5: Sample few-shot results of Moviesl.

GPT-3 Result | True Label GPT-3 Result | True Label
1 1

(=l o] ol fol fo! ol fol fo] fo] Fo
OO == OO OO

SN SN RS S RN RN (VN (U S S

OO = O —| O] O = —

The results show that GPT-3 can be easily biased with few-shot learning, which is dataset relevant.
For example, in Table E], GPT-3 predicts all ER pairs as non-matches (i.e., 0), while in Table@ GPT-3
predicts all ER pairs as matches (i.e., 1). One possible reason is that few-shot learning is mainly for

better task reasoning, not for “similar” data understanding. The ER problem is a Boolean problem,
which is very easy to understand. Providing more examples cannot help GPT-3 to better understand
the task; instead, these examples may even mislead GPT-3.

Summary 2. Few-shot learning is not suitable for using GPT-3 for ER.

Experiment 3: GPT-3 vs. specific models. Next, we compare GPT-3 with specific models (see
Section [3.3) trained with a small number of labels. For the four datasets used in Table[I] we split the
labeled data as train/validate/test with the ratio 3/1/1. The performance comparison of specific models
with GPT-3 are shown in Table @ Note that for a fair comparison, the GPT-3 results in Table E] are
tested using the same test data as specific models.

Table 6: GPT-3 (Temperature = 0, zero-shot) vs. specific models.

Temperature GPT-3 Specific Models
Dataset P R F1 P R F1
Restaurantl 99 | 91 | 95 || 094 | .94 | 94
Bikes 1 .1 18 77 | 55 | .64
Moviesl 1| .37 | 49 98 | 96 | .97
Books 63 | .60 | .62 1 1 1

Summary 3. Specific ER models, even only being trained with a small number of train data (e.g., a
few hundred), can clearly outperform GPT-3 for the problem of ER.

5.2 A trained generic entity resolution model
5.2.1 Experimental setting

Datasets. For testing, we used the same four ER datasets as shown in Table(l| For training, we used
16 datasets that are different from the test datasets from the Magellan Data Repository [4]. We mix
the labeled train data from these 16 datasets and train the model as described in Section 4.2l

Evaluation metrics. We also use Precision, Recall, and F1-measure.

Zero-shot, fine-tuning and delta-tuning. We consider different variants of the trained generic ER
model.

e Zero-shot means that we directly apply the trained ER model on a new ER dataset.
* Fine-tuning is to use a small set of train data in the tested dataset for fine-tuning the model.

* Delta-tuning is to add a small delta network using a MLP and freezes the Encoder and
Matcher, as shown in FigureE].

For both Fine-tuning and Delta-tuning, we used 1/3 of labeled data for training, and the rest for
testing. Different from Fine-tuning, Delta-tuning is designed to avoid the catastrophic forgetting
phenomena when a trained model learns new knowledge but performs badly on the tasks it was
trained before.

Matcher

(@ b) — (M)

0/1

Freeze Freeze

Figure 3: Generic entity resolution with a delta network for fine-tuning.

5.2.2 Experimental result

Experiment 4: generic models with zero-shot vs. specific models. The results of generic models
and specific models are shown in Table[/] In this table, we only highlight the best F1-score.

Table 7: Generic Models with zero-shot vs. specific models.

Temperature Generic Models Specific Models
Dataset P R | F1 P R | F1
Restaurantl 98 | 94 | 96 || 0.94 | 94 | 94
Bikes 41 | 81 | 54 J7 | .55 | .64
Moviesl 87 1 .98 | .92 98 | .96 | 97
Books .83 1 91 1 1 1

Summary 4. Generic ER is slightly worse than, but comparable with, specific models. Note, however,
that if there are 10 ER datasets, specific models need 10x storage of a generic model. Hence, a
generic model is a good trade-off between effectiveness and efficiency.

Experiment 5: generic models with fine-tuning and delta-tuning vs. specific models. The results
of generic models with Fine-tuning and Delta-tuning, and those of specific models, are shown in
Table[8] In this table, we only highlight the best F1-score, for simplicity.

Table 8: Generic models with fine-tuning and delta-tuning vs. specific models.

Temperature || Generic Models (Fine-tuning) | Generic Models (Delta-tuning) | Specific Models
Dataset P R F1 P R F1 P R | F1
Restaurantl 98 | .96 97 94 | 98 .96 94 1 94| 94
Bikes S5 | .86 .67 .56 | .88 .69 g7 | 55| .64
Moviesl 1 .98 99 1 .98 99 98 | 96 | .97
Books 97 1 .99 .94 1 97 1 1 1

Summary 5. Both Fine-tuning and Delta-tuning can achieve comparable or even better performance
than specific models with a small number of train data. However, as discussed above, Fine-tuning may
cause catastrophic forgetting for the generic model. Hence, we would recommend to use Delta-tuning
to quickly adapt the generic model to a specific task.

6 Conclusion

In this paper, we have proposed methods for training generic ER models, where one model can be
used for many ER datasets from different domains. We have first shown that GPT-3 can work for
ER, but only to some extent, which is worse than deep learning models trained for ER tasks. We
have further explored the opportunity of training one generic model and shown that it can achieve
comparable performance with specific models, but with a much smaller size. In addition, we have
proposed two methods to further tune a trained generic model, namely Fine-tuning and Delta-tuning;
both achieve comparable or even better results than specific models but with only a small number of
train data. If one still wants the ER model to perform well on previously trained ER datasets, then
Delta-tuning should be used.

References

[1] Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F. Ilyas, M. Ouzzani, P. Papotti, M. Stone-
braker, and N. Tang. Detecting data errors: Where are we and what needs to be done? Proc.
VLDB Endow., 9(12):993-1004, 2016.

[2] M. Bilenko, R. J. Mooney, W. W. Cohen, P. Ravikumar, and S. E. Fienberg. Adaptive name
matching in information integration. IEEE Intell. Syst., 18(5):16-23, 2003.

[3] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,

A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei.
Language models are few-shot learners. CoRR, abs/2005.14165, 2020.

[4] S. Das, A. Doan, P. S. G. C., C. Gokhale, P. Konda, Y. Govind, and D. Paulsen. The magellan
data repository. https://sites.google.com/site/anhaidgroup/projects/datal

[5] D. Deng, R. C. Fernandez, Z. Abedjan, S. Wang, M. Stonebraker, A. K. Elmagarmid, L. F. Ilyas,
S. Madden, M. Ouzzani, and N. Tang. The data civilizer system. In 8th Biennial Conference
on Innovative Data Systems Research, CIDR 2017, Chaminade, CA, USA, January 8-11, 2017,
Online Proceedings. www.cidrdb.org, 2017.

[6] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[7] H. L. Dunn. Record linkage. American Journal of Public Health, 36(12):1412-1416, 1946.

[8] M. Ebraheem, S. Thirumuruganathan, S. Joty, M. Ouzzani, and N. Tang. Distributed representa-
tions of tuples for entity resolution. Proceedings of the VLDB Endowment, 11(11):1454-1467,
2018.

[9] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record detection: A survey.
IEEFE Trans. Knowl. Data Eng., 19(1):1-16, 2007.

[10] C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli, J. Shavlik, and X. Zhu. Corleone:
Hands-off crowdsourcing for entity matching. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data, pages 601-612, 2014.

[11] J. Kasai, K. Qian, S. Gurajada, Y. Li, and L. Popa. Low-resource deep entity resolution with
transfer and active learning. In A. Korhonen, D. R. Traum, and L. Marquez, editors, Proceedings
of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence,
Italy, July 28- August 2, 2019, Volume 1: Long Papers, pages 5851-5861. Association for
Computational Linguistics, 2019.

[12] P. V. Konda. Magellan: Toward building entity matching management systems. The University
of Wisconsin-Madison, 2018.

[13] Y. Li, J. Li, Y. Suhara, A. Doan, and W. Tan. Deep entity matching with pre-trained language
models. Proc. VLDB Endow., 14(1):50-60, 2020.

[14] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[15] M. Long, H. Zhu, J. Wang, and M. L. Jordan. Deep transfer learning with joint adaptation
networks. In International conference on machine learning, pages 2208-2217. PMLR, 2017.

[16] M. Loster, I. K. Koumarelas, and F. Naumann. Knowledge transfer for entity resolution with
siamese neural networks. ACM J. Data Inf. Qual., 13(1):2:1-2:25, 2021.

[17] L. Mouselimis. fastText: Efficient Learning of Word Representations and Sentence Classification
using R, 2022. R package version 1.0.2.

[18] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep, E. Arcaute, and
V. Raghavendra. Deep learning for entity matching: A design space exploration. In Proceedings
of the 2018 International Conference on Management of Data, pages 19-34, 2018.

[19] A. Narayan, I. Chami, L. Orr, and C. Ré. Can foundation models wrangle your data?, 2022.

[20] J. Pennington, R. Socher, and C. Manning. GloVe: Global vectors for word representation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532—1543, Doha, Qatar, Oct. 2014. Association for Computational
Linguistics.

https://sites.google.com/site/anhaidgroup/projects/data

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu.
Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn.
Res., 21:140:1-140:67, 2020.

R. Singh, V. V. Meduri, A. Elmagarmid, S. Madden, P. Papotti, J.-A. Quiané-Ruiz, A. Solar-
Lezama, and N. Tang. Synthesizing entity matching rules by examples. Proceedings of the
VLDB Endowment, 11(2):189-202, 2017.

N. Tang, J. Fan, F. Li, J. Tu, X. Du, G. Li, S. Madden, and M. Ouzzani. RPT: relational
pre-trained transformer is almost all you need towards democratizing data preparation. Proc.
VLDB Endow., 14(8):1254-1261, 2021.

S. Thirumuruganathan, S. A. P. Parambath, M. Ouzzani, N. Tang, and S. Joty. Reuse and
adaptation for entity resolution through transfer learning. arXiv preprint arXiv:1809.11084,
2018.

S. Thirumuruganathan, S. A. P. Parambath, M. Ouzzani, N. Tang, and S. R. Joty. Reuse and
adaptation for entity resolution through transfer learning. CoRR, abs/1809.11084, 2018.

J. Tu, J. Fan, N. Tang, P. Wang, C. Chai, G. Li, R. Fan, and X. Du. Domain adaptation for deep
entity resolution. In Z. Ives, A. Bonifati, and A. E. Abbadi, editors, SIGMOD ’22: International
Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, pages 443-457.
ACM, 2022.

J. Tu, J. Fan, N. Tang, P. Wang, C. Chai, G. Li, R. Fan, and X. Du. Domain adaptation for deep
entity resolution. In Z. Ives, A. Bonifati, and A. E. Abbadi, editors, SIGMOD ’22: International
Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, pages 443-457.
ACM, 2022.

J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder: Crowdsourcing entity resolution.
arXiv preprint arXiv:1208.1927, 2012.

J. Wang, G. Li, J. X. Yu, and J. Feng. Entity matching: How similar is similar. Proc. VLDB
Endow., 4(10):622-633, 2011.

W. E. Winkler. Data quality in data warehouses. In J. Wang, editor, Encyclopedia of Data
Warehousing and Mining, Second Edition (4 Volumes), pages 550-555. IGI Global, 2009.

10

	Introduction
	Related work
	Word embedding based methods
	Pre-trained language models
	Transfer learning and domain adaptation

	Background
	Entity resolution
	Deep learning for entity resolution
	Specific entity resolution models
	Generic entity resolution models

	Methods
	GPT-3 for entity resolution
	A trained generic entity resolution model

	Experiments
	GPT-3 for entity resolution
	Experimental setting
	Experimental result

	A trained generic entity resolution model
	Experimental setting
	Experimental result

	Conclusion

