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Abstract

Missing value imputation in machine learning is the task of estimating the missing
values in the dataset accurately using available information. In this task, several
deep generative modeling methods have been proposed and demonstrated their
usefulness, e.g., generative adversarial imputation networks. Recently, diffusion
models have gained popularity because of their effectiveness in the generative
modeling task in images, texts, audio, etc. To our knowledge, less attention
has been paid to the investigation of the effectiveness of diffusion models for
missing value imputation in tabular data. Based on recent development of diffusion
models for time-series data imputation, we propose a diffusion model approach
called “Conditional Score-based Diffusion Models for Tabular data” (CSDI_T). To
effectively handle categorical variables and numerical variables simultaneously,
we investigate three techniques: one-hot encoding, analog bits encoding, and
feature tokenization. Experimental results on benchmark datasets demonstrated the
effectiveness of CSDI_T compared with well-known existing methods, and also
emphasized the importance of the categorical embedding techniques.

1 Introduction
In real-world applications, it is often the case that the dataset for training a prediction model contains
missing values. This phenomenon can happen for many reasons, e.g., human error, privacy concerns,
and the difficulty of data collection. For example, in census data, some people might not be
comfortable to reveal their sensitive information such as employment information [1, 2]. In healthcare
data, different patients may have taken different health examinations, which cause the dataset to have
different available health features for each patient [3, 4]. Technically, the missing data problem can
be divided into three categories: Missing completely at random (MCAR), Missing at random (MAR),
Missing not at random (MNAR) (see Rubin [5] and Van Buuren [6] for more details).

According to Jarrett et al. [7], a missing value imputation approach can be divided into two categories.
The first category is the iterative approach. It is based on the idea of estimating the conditional
distribution of one feature using all other available features. In one iteration, we will train a
conditional distribution estimator to predict the value of each feature. We will repeat the process for
many iterations until the process is converged, i.e., the latest iteration does not change the prediction
output significantly according to the pre-specified convergence criterion. This approach has been
studied extensively [8–10, 7] and one of the most well-known methods is Multiple Imputation based
on Chained Equations (MICE) [8]. The second category is a deep generative model approach. In this
approach, we will train a generative model to generate values in missing parts based on observed
values. Previous methods that can be categorized in this approach are Multiple Imputation using
Denoising Autoencoders (MIDA) [11], Handling Incomplete Heterogeneous Data using Variational
Autoencoders (HIVAE) [12], Missing Data Importance-weighted Autoencoder (MIWAE) [13], and
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Generative Adversarial Imputation Nets (GAIN) [14]. Recently, diffusion model is a generative
model that has demonstrated its effectiveness over other generative models in various domains,
e.g., computer vision [15–17], time-series data [18, 19], chemistry [20, 21], and natural language
processing [22, 23]. However, to the best of our knowledge, a diffusion model has not been proposed
yet for missing value imputation in tabular data.

The goal of this paper is to develop a diffusion model approach for missing value imputation based on
the recent development of diffusion model approach for missing value imputation in time-series data
called CSDI [18]. CSDI is originally designed for time-series data and it cannot support categorical
variables, which are necessary for tabular data. To solve this problem, we propose a variant of CSDI
called CSDI_T for tabular data by making it supports both the categorical and numerical features.
Our experimental results show that CSDI_T can be successfully trained to achieve competitive
performance to existing methods both in the iterative approach and generative approach. We can also
observe that the choice of categorical embedding methods can affect performance.

2 Problem formulation

Let X = (R ∪ {∅})d be an input space, where R denotes a real number space and “∅” denotes
a missing value. In missing value imputation, we are given d-dimensional training dataset Xtr =
{xi}ni=1, where n is the number of data. Without loss of generality, a feature j ∈ {1, . . . , d} of xi is
defined as xj

i ∈ X , where a feature can be missing, numerical variable, or categorical variable. This
paper focuses on an inductive setting where the goal is to find an imputation function f : X → Rd

that transforms the input that allows missing value X to the d-dimension real values Rd. A desirable
f should be able to replace the missing values with reasonable values.

To evaluate the performance of f , we are given test input data Xte = {xi}ni=1 and ground truths
Yte = {yji ∈ R : xj

i = ∅}. For xj
i , we define x̂j

i to be an imputed feature obtained from f(xi) for
a feature j. Let M j = {i : xj

i = ∅} be the set of missing value indices and N j
miss = |M j | be the

number of missing values for a feature j. To calculate the error of f , we use the root mean squared
error (RMSE) if j is numerical and the error rate (Err) if j is categorical:

RMSE(j) =

√∑
i∈Mj (x̂

j
i − yji )

2

N j
miss

, Err(j) =
1

N j
miss

∑
i∈Mj

1[x̂j
i ̸=yj

i ]
,

where 1[·] is an indicator function that returns 1 if the condition holds and 0 otherwise.

3 CSDI_T: Conditional Score-based Diffusion Models for Tabular data
In this section, we describe our proposed diffusion model method for missing value imputation in
tabular data by describing CSDI [18] and how to modify it for handling tabular data.

3.1 Conditional Score-based Diffusion Model (CSDI)

Diffusion model contains two processes: the forward noising process where we iteratively inject the
noise into the input data, and the reverse denoising process where we iteratively denoise the data. In
the standard training process of diffusion model [15, 16], only the reverse process requires training
while the forward process is always fixed. We omit the details of diffusion model for brevity (see
Song and Ermon [15], Ho et al. [16] for more information).

Based on the idea of diffusion model, Tashiro et al. [18] recently proposed a diffusion model called
CSDI for missing value imputation for time-series data. The key idea of CSDI can be explained as
follows. Instead of reconstructing the whole input x by straightforwardly using the diffusion model,
aka., unconditional diffusion model (see Appendix C of Tashiro et al. [18]), CSDI separates input x
into two parts: the observed part (aka., conditional part) xco and the unobserved part to predict (aka.,
target part) xta. The goal of the diffusion model is to model the following distribution:

pθ(x
ta
t−1|xta

t ,xco
0 ) = N (xta

t−1;µθ(x
ta
t , t|xco

0 ), σI),

where t ∈ {1, . . . , T} denotes the iteration round of the process and T is a hyperparameter. We need
to model µθ that focuses only on predicting the values of the unobserved part. It is observed that the
conditional diffusion model can achieve better performance than the unconditional one.
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Figure 1: Example of handling categorical variables in one-hot encoding, analog bits encoding, and
embeddings. The categorical variable is marked as the yellow block. Two numerical variables are
marked as blue and green blocks.

In our study, we followed the formulation of Tashiro et al. [18] as our objective function. For the
architecture part, we slightly modified the architecture proposed in CSDI to appropriately handle
tabular data. More specifically, we removed the temporal transformer layer of the original CSDI
architecture since our data does not contain temporal information and use a simple residual connection
of transformer encoder and multi-layered perceptron.

3.2 Handling categorical variables

In the original CSDI, it is assumed that the input features contain only numerical variables, which
is not the case for tabular data. In this section, we extend CSDI to support categorical variables by
proposing three different techniques: (1) one-hot encoding, (2) analog bits encoding, and (3) feature
tokenization. Figure 1 illustrates how each encoding works. The categorical variable is marked
as yellow and we assume that there are three different categories for this feature. Without loss of
generality, for one-hot encoding, the representation can be [1, 0, 0]. For analog bits, we follow the
encoding scheme proposed by Chen et al. [24]. In our example, the categorical variable will take two
columns and represented in binary bits as [1, 1]. To make the data more distinguishable, we further
convert 0 to −1 in one-hot and analog bits encoding. For feature tokenizer [25], we transform both
numerical and categorical variables together to embeddings. In our example, variables will have
embedding vectors with the same length, i.e., E1, E2, E3 ∈ Re. In sum, analog bits encoding takes
less columns compared to one-hot encoding but will make the encoded vector complex. Feature
tokenizer lets all variables have embeddings with the same length.

Then, we train the model with the processed input. After obtaining the raw output, different handling
schemes require different recover procedures. For one-hot encoding, we treat the index of the largest
element as the model inferred category. For analog bits encoding, we convert every output element to
1 if the output element is larger than 0, otherwise we convert it to −1. In the FT scheme, we need
to recover both numerical and categorical variables back from the embeddings [25]. For numerical
variables, we divide the diffusion model output by the corresponding embedding element-wise and
use the average value as the final model output. For categorical variables, we calculate the Euclidean
distance between CSDI_T outputs and every categorical embedding and set the category of closest
embedding (i.e., 1-nearest neighbor) as the final model output.

4 Experimental results
In this section, we report experiments on pure numerical datasets and mixed variable datasets to show
the effectiveness of CSDI_T.

Datasets: We used seven datasets. Census Income Data Set (Census), Wine Quality (Wine), Concrete
Compressive Strength (Concrete), Libras Movement (Libras) and Breast Cancer Wisconsin (Breast)
were obtained from UCI Machine Learning Repository [26]. COVID-192 and Diabetes3 were obtained
from Kaggle. Dataset information is detailed in Appendix A. Note that Diabetes and COVID-19
datasets only have binary category variables and we preprocessed the numerical variables for all
datasets by min-max normalization.

Comparison methods: In our experiments, we compare our proposed method with a simple base-
line that uses training data’s mean values for numerical variables and mode values for categorical
variables (Mean / Mode). We used MICE method with linear regression and logistic regression
(MICE (linear)) and MICE method based on random forest (MissForest). We also used GAIN as a
representative method for a deep generative model approach. The code implementation for MICE

2https://www.kaggle.com/datasets/tanmoyx/covid19-patient-precondition-dataset
3https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset
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Table 1: RMSE and error rate performance for comparison methods on three mixed variable datasets.
Note that one-hot and analog bits are equivalent for a dataset without multi-categorical variables.

Diabetes COVID-19 Census
RMSE Error rate RMSE Error rate RMSE Error rate

Mean / Mode 0.222 (0.003) 0.260 (0.004) 0.138 (0.002) 0.144 (0.002) 0.120 (0.003) 0.424 (0.003)
MICE (linear) 0.263 (0.002) 0.270 (0.004) 0.125 (0.003) 0.300 (0.038) 0.101 (0.002) 0.530 (0.011)
MissForest 0.216 (0.003) 0.214 (0.001) 0.120 (0.002) 0.131 (0.002) 0.112 (0.004) 0.300 (0.014)
GAIN 0.202 (0.003) 0.282 (0.005) 0.127 (0.002) 0.217 (0.011) 0.123 (0.057) 0.412 (0.012)
CSDI_T / one-hot 0.197 (0.001) 0.222 (0.005) 0.122 (0.003) 0.111 (0.012) 0.099 (0.004) 0.400 (0.033)
CSDI_T / analog bits 0.197 (0.001) 0.222 (0.005) 0.122 (0.003) 0.111 (0.012) 0.103 (0.004) 0.376 (0.013)
CSDI_T / FT 0.206 (0.002) 0.224 (0.004) 0.123 (0.002) 0.107 (0.002) 0.098 (0.003) 0.345 (0.002)

Table 2: RMSE performance of comparison methods on four pure numerical datasets.

Methods Wine Concrete Libras Breast
Mean 0.076 (0.003) 0.217 (0.007) 0.099 (0.001) 0.263 (0.009)
MICE (linear) 0.065 (0.003) 0.153 (0.006) 0.034 (0.001) 0.154 (0.011)
MissForest 0.060 (0.002) 0.173 (0.005) 0.024 (0.001) 0.163 (0.014)
GAIN 0.072 (0.004) 0.203 (0.007) 0.089 (0.006) 0.165 (0.006)
CSDI_T 0.065 (0.004) 0.131 (0.008) 0.011 (0.001) 0.153 (0.003)

(linear), MissForest, and GAIN was provided by the Hyperimpute framework [7]4. For CSDI_T, we
built our code based on CSDI [18]5. Hyperparameter information is detailed in Appendix B.

Results: First, we show our results on three mixed variable datasets (Diabetes, Census and COVID-
19). The following Table 1 shows the comparison between different imputation methods and
categorical variable handling schemes. Our proposed methods (CSDI_T) reached the lowest RMSE
in Diabetes and Census datasets. MissForest reached the lowest error rate in the Diabetes and
Census datasets. The RMSE difference between three categorical handling methods was not evident.
However, CSDI_T with FT obtained the lowest error rate in the Census dataset compared to other
two categorical handling methods, where the analog bits approach is superior to one-hot. Second, we
show our results on four pure numerical datasets in Table 2. It can be observed that our proposed
CSDI_T has best performance against other comparison methods for three out of four datasets.

Discussions: Based on the results, CSDI_T is observed to be effective in imputing numerical
variables, where it obtained the best RMSE performance for 5 out of 7 datasets. Different from
previous generative models, the diffusion model performs decoding through a reverse process.
CSDI_T can benefit from this iterative approximation reverse process, which allows the neural
network to gradually figure out the target value. Moreover, our results suggest the effectiveness of FT
in handling categorical variables. The superiority of FT is evident in the Census dataset (the only
multi-category mixed data types dataset). One possible reason is that FT treats all variables equally.
That is, all numerical variables will have embedding vectors with the same length. This strategy
avoids the problem of column imbalance. Column imbalance can happen in one-hot and analog bits
encoding, where the more categories the category variable contain, the more columns it will take.

5 Conclusions and future work
We have proposed a diffusion model-based method for missing value imputation called CSDI_T. We
demonstrated that CSDI_T can obtain competitive performance with other well-known imputation
methods. Particularly, CSDI_T works well for numerical variables imputation. We also explored
different schemes for handling categorical variables and found that FT embedding gives evident better
performance compared to one-hot encoding and analog bits in the Census dataset. Future work for
CSDI_T that can be considered are (1) investigation of the inference time, (2) model architecture
improvement, and (3) theoretical analysis of the loss function.
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A Dataset information
Table 3 shows the characteristic of each dataset.

Table 3: Dataset information

Datasets # Categorical # Numerical # Samples
Census 9 6 20000
Diabetes 15 7 20000
COVID-19 18 1 56660
Wine 0 12 4898
Concrete 0 9 1030
Libras 0 91 360
Breast 0 10 699

B Hyperparameters
We did not heavily tune parameters for our model as well as the baseline models. We used default
settings for most hyperparameters for all experiments except the batch size and the number of epochs,
which depends on the dataset size. For CSDI_T, We set the number of layers to 2 for the COVID-19
dataset and 4 for other datasets. We set the initial learning rate as 0.0005. We use Adam optimizer
with MultiStepLR with 0.1 decay at 25%, 50%, 75%, and 90% of the total epochs. The number of
channels is set as 64. The number of heads in the transformer encoder is set as 4. The dimension of
the diffusion embedding and feature embeddings is 128 and 64, separately. The number of reverse
steps is 150 for Diabetes, COVID-19, and all numerical datasets, and 100 for the Census dataset.
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