Accepted Papers
Orals
-
Analysis of the Attention in Tabular Language Models [recording]
Aneta Koleva, Martin Ringsquandl, Volker Tresp -
Transfer Learning with Deep Tabular Models [recording]
Roman Levin, Valeriia Cherepanova, Avi Schwarzschild, Arpit Bansal, C. Bayan Bruss, Tom Goldstein, Andrew Gordon Wilson, Micah Goldblum -
STable: Table Generation Framework for Encoder-Decoder Models [recording]
Michał Pietruszka, Michał Turski, Łukasz Borchmann, Tomasz Dwojak, Gabriela Pałka, Karolina Szyndler, Dawid Jurkiewicz, Łukasz Garncarek -
TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second [recording]
Noah Hollmann, Samuel Müller, Katharina Eggensperger, Frank Hutter -
Towards Parameter-Efficient Automation of Data Wrangling Tasks with Prefix-Tuning [recording]
David Vos, Till Döhmen, Sebastian Schelter -
RegCLR: A Self-Supervised Framework for Tabular Representation Learning in the Wild [recording]
Weiyao Wang, Byung-Hak Kim, Varun Ganapathi
Posters
-
SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training
Gowthami Somepalli, Avi Schwarzschild, Micah Goldblum, C. Bayan Bruss, Tom Goldstein -
Generic Entity Resolution Models
Jiawei Tang, Yifei Zuo, Lei Cao, Samuel Madden -
Towards Foundation Models for Relational Databases [video pitch]
Liane Vogel, Benjamin Hilprecht, Carsten Binnig -
Diffusion models for missing value imputation in tabular data [video pitch]
Shuhan Zheng, Nontawat Charoenphakdee -
STab: Self-supervised Learning for Tabular Data
Ehsan Hajiramezanali, Max W Shen, Gabriele Scalia, Nathaniel Lee Diamant -
CASPR: Customer Activity Sequence based Prediction and Representation
Damian Konrad Kowalczyk, Pin-Jung Chen, Sahil Bhatnagar -
Conditional Contrastive Networks
Emily Mu, John Guttag -
Self-supervised Representation Learning Across Sequential and Tabular Features Using Transformers
Rajat Agarwal, Anand Muralidhar, Agniva Som, Hemant Kowshik -
The Need for Tabular Representation Learning: An Industry Perspective
Joyce Cahoon, Alexandra Savelieva, Andreas C Mueller, Avrilia Floratou, Carlo Curino, Hiren Patel, Jordan Henkel, Markus Weimer, Roman Batoukov, Shaleen Deep, Venkatesh Emani, Richard Wydrowski, Nellie Gustafsson -
STUNT: Few-shot Tabular Learning with Self-generated Tasks from Unlabeled Tables
Jaehyun Nam, Jihoon Tack, Kyungmin Lee, Hankook Lee, Jinwoo Shin -
Tabular Data Generation: Can We Fool XGBoost?
EL Hacen Zein, Tanguy Urvoy -
SiMa: Federating Data Silos using GNNs
Anonymized
-
Self Supervised Pre-training for Large Scale Tabular Data
Sharad Chitlangia, Anand Muralidhar, Rajat Agarwal -
RoTaR: Efficient Row-Based Table Representation Learning via Teacher-Student Training
Zui Chen, Lei Cao, Samuel Madden -
MapQA: A Dataset for Question Answering on Choropleth Maps
Shuaichen Chang, David Palzer, Jialin Li, Eric Fosler-Lussier, Ningchuan Xiao -
MET: Masked Encoding for Tabular Data
Kushal Alpesh Majmundar, Sachin Goyal, Praneeth Netrapalli, Prateek Jain -
Active Learning with Table Language Models
Martin Ringsquandl, Aneta Koleva -
Structural Embedding of Data Files with MAGRITTE [video pitch]
Gerardo Vitagliano, Mazhar Hameed, Felix Naumann